

## InstaFlow: One-Step Stable Diffusion from Straight Probability Flows

### Xingchao Liu

**UT** Austin

#### **AI** Generated Contents



Images



Texts & Codes



Text-to-Video generation: "a horse galloping on a street"



Text-to-Video generation: "a panda is playing guitar on times square"

Videos



Policies

#### **AIGC** Pipeline



**Real-World Data** 

Training

Inference













| Energy-Based Model<br>[Hinton 1999, 2002]                                            | ×            | $\mathbf{X}$ |
|--------------------------------------------------------------------------------------|--------------|--------------|
| Autoregressive Model<br>[Frey 1998, Bengio & Bengio 2000]                            |              | ×            |
| GAN<br>[Goodfellow et al. 2014]                                                      | ×            | $\checkmark$ |
| VAE<br>[Kingma & Welling 2014]                                                       | ×            | $\checkmark$ |
| Normalizing Flow<br>[Rezende & Mohamed 2015]                                         | ×            |              |
| Diffusion Model<br>[Sohl-Dickstein et al. 2015,<br>Ho et al. 2020, Song et al. 2021] | $\checkmark$ | ×            |

| Energy-Based Model<br>[Hinton 1999, 2002]                                            | ×            | × |
|--------------------------------------------------------------------------------------|--------------|---|
| Autoregressive Model<br>[Frey 1998, Bengio & Bengio 2000]                            | $\checkmark$ | × |
| GAN<br>[Goodfellow et al. 2014]                                                      | ×            |   |
| VAE<br>[Kingma & Welling 2014]                                                       | ×            |   |
| Normalizing Flow<br>[Rezende & Mohamed 2015]                                         | ×            |   |
| Diffusion Model<br>[Sohl-Dickstein et al. 2015,<br>Ho et al. 2020, Song et al. 2021] | $\checkmark$ | × |

| Efficient Training |
|--------------------|
|--------------------|

| Energy-Based Model<br>[Hinton 1999, 2002]                                            | ×            | ×            |
|--------------------------------------------------------------------------------------|--------------|--------------|
| Autoregressive Model<br>[Frey 1998, Bengio & Bengio 2000]                            | $\checkmark$ | ×            |
| GAN<br>[Goodfellow et al. 2014]                                                      | ×            | $\checkmark$ |
| VAE<br>[Kingma & Welling 2014]                                                       | ×            | $\checkmark$ |
| Normalizing Flow<br>[Rezende & Mohamed 2015]                                         | ×            | $\checkmark$ |
| Diffusion Model<br>[Sohl-Dickstein et al. 2015,<br>Ho et al. 2020, Song et al. 2021] | $\checkmark$ | ×            |

| Efficient T | raining |
|-------------|---------|
|-------------|---------|

| Energy-Based Model<br>[Hinton 1999, 2002]                                            | ×            | × |
|--------------------------------------------------------------------------------------|--------------|---|
| Autoregressive Model<br>[Frey 1998, Bengio & Bengio 2000]                            | $\checkmark$ | × |
| GAN<br>[Goodfellow et al. 2014]                                                      | ×            |   |
| VAE<br>[Kingma & Welling 2014]                                                       | ×            |   |
| Normalizing Flow<br>[Rezende & Mohamed 2015]                                         | ×            |   |
| Diffusion Model<br>[Sohl-Dickstein et al. 2015,<br>Ho et al. 2020, Song et al. 2021] | $\checkmark$ | × |

| Efficient Tr | raining |
|--------------|---------|
|--------------|---------|

| Energy-Based Model<br>[Hinton 1999, 2002]                                            | ×            | × |
|--------------------------------------------------------------------------------------|--------------|---|
| Autoregressive Model<br>[Frey 1998, Bengio & Bengio 2000]                            | $\checkmark$ | × |
| GAN<br>[Goodfellow et al. 2014]                                                      | ×            |   |
| VAE<br>[Kingma & Welling 2014]                                                       | ×            |   |
| Normalizing Flow<br>[Rezende & Mohamed 2015]                                         | ×            |   |
| Diffusion Model<br>[Sohl-Dickstein et al. 2015,<br>Ho et al. 2020, Song et al. 2021] | $\checkmark$ | × |

| Efficient Training | J |
|--------------------|---|
|--------------------|---|

| Energy-Based Model<br>[Hinton 1999, 2002]                                            | ×            | ×            |
|--------------------------------------------------------------------------------------|--------------|--------------|
| Autoregressive Model<br>[Frey 1998, Bengio & Bengio 2000]                            | $\checkmark$ | ×            |
| GAN<br>[Goodfellow et al. 2014]                                                      | ×            | $\checkmark$ |
| VAE<br>[Kingma & Welling 2014]                                                       | ×            | $\checkmark$ |
| Normalizing Flow<br>[Rezende & Mohamed 2015]                                         | ×            | $\checkmark$ |
| Diffusion Model<br>[Sohl-Dickstein et al. 2015,<br>Ho et al. 2020, Song et al. 2021] | $\checkmark$ | ×            |

|                                                                                             | Efficient Training | Efficient Sampling |
|---------------------------------------------------------------------------------------------|--------------------|--------------------|
|                                                                                             |                    |                    |
| Energy-Based Model<br>[Hinton 1999, 2002]                                                   | ×                  | ×                  |
| Autoregressive Model<br>[Frey 1998, Bengio & Bengio 2000]                                   | $\checkmark$       | ×                  |
| GAN<br>[Goodfellow et al. 2014]                                                             | Can we get bot     | h? √               |
| VAE<br>[Kingma & Welling 2014]                                                              | X                  | $\overline{}$      |
| Normalizing Flow<br>[Rezende & Mohamed 2015]                                                | ×                  |                    |
| <b>Diffusion Model</b><br>[Sohl-Dickstein et al. 2015,<br>Ho et al. 2020, Song et al. 2021] | $\checkmark$       | ×                  |

#### **Diffusion Models**



Sampling

### Why are they slow?





Solution: Marginal-preserving ordinary differential equation (ODE)

DDIM [Song et al. 2021], Heun [Karras et al. 2022], DPM-Solver [Lu et al. 2022], etc.

Problem: Noise in the diffusion process [Liu et al., ICLR2023 spotlight]

 $dX = [f(X,t) - g^{2}(t)\nabla_{X}\log p_{t}(X)]dt + g(t)dWt$  Noise

Reverse Stochastic Differential Equation (SDE)

### Why are they slow?



Problem: Noise in the diffusion process [Liu et al., ICLR2023 spotlight]



**Solution:** Marginal-preserving ordinary differential equation (ODE) DDIM [Song et al. 2021], Heun [Karras et al. 2022], DPM-Solver [Lu et al. 2022], etc.  $dX = [f(X,t) - \frac{1}{2}g^2(t)\nabla_X \log p_t(X)]dt$ 

Probability Flow Ordinary Differential Equation



New Problem: Curved ODE trajectory

$$dX = [f(X,t) - \frac{1}{2}g^{2}(t)\nabla_{X}\log p_{t}(X)]dt$$

Probability Flow Ordinary Differential Equation

### **Discretization of ODE**

• In computer, we solve ODEs by Euler discretization

 $X_{t+\epsilon} = X_t + \epsilon \, v(X_t, t)$ 

 $\epsilon$ : step size

Large  $\epsilon$ : Fast, inaccurate ; Small  $\epsilon$ : Accurate, slow



dX = v(X, t)dtProbability Flow Ordinary Differential Equation

#### **Research Question**



#### Diffusion models connect two distribution with diffusion processes



Idea: Connect with straight lines!

#### **Rectified Flow**

- Learn from straight-line teachers
- Purely ODE-based; no more conversion from SDE to ODE
- A unified framework for both generative modeling and transfer learning
- Bridge the gap between one-step and continuous-time models
   Reflow

#### **Rectified Flow: Problem of Interest**

Given: observed data points from two distributions

 $\{x_i^0\}_{i=1}^n \sim \pi_0, \ \{x_i^1\}_{i=1}^n \sim \pi_1$ 

**Goal**: find a transport map *T* such that,

$$Z_1 \coloneqq T(Z_0) \sim \pi_1$$
 when  $Z_0 \sim \pi_0$ 











$$\mathsf{DDE}: \frac{dX}{dt} = X_1 - X_0$$





Linear Interpolation:  $X_t = tX_1 + (1 - t)X_0$ ODE:  $\frac{dX}{dt} = X_1 - X_0$ 

#### Step 2: Project to Causal Students

**Teacher ODE (Non-causal)** 

$$\frac{dX}{dt} = X_1 - X_0$$

Student ODE (Causal)

$$\frac{dX}{dt} = v_{\theta}(X, t)$$

**NEURAL NETWORK** 

**Projection Loss** 

$$\min_{\theta} \int_{0}^{1} \mathbf{E}_{X_{0} \sim \pi_{0}, X_{1} \sim \pi_{1}} \left[ \left| \left[ (X_{1} - X_{0}) - v_{\theta}(X_{t}, t) \right] \right|^{2} \right] \mathrm{d}t$$
  
Teacher Student  
velocity velocity

#### Step 2: Project to Causal Students Projection Loss



#### Step 3: Generation with ODE solver

Randomly sample  $X_0 \sim \pi_0$ 

Generated distribution  $X_1 \sim \pi_1$ Guaranteed by math

Simulate with ODE solver, e.g., Euler

$$\mathsf{ODE}: \frac{dX}{dt} = v_{\theta}(X, t)$$

#### Step 3: Generation with ODE solver



#### Algorithm: Rectified Flow

- **Given:**  $\{x_i^0\}_{i=1}^n \sim \pi_0, \{x_i^1\}_{i=1}^n \sim \pi_1$
- Training Iteration (Batch size = 1):
  - Step 1: Randomly sample  $X_0 \in \{x_i^0\}_{i=1}^n$  and  $X_1 \in \{x_i^1\}_{i=1}^n$
  - Step 2: Randomly sample  $t \in [0,1]$
  - Step 3: Compute gradient with loss

$$L(\theta) \coloneqq \left| |X_1 - X_0 - v_{\theta}(X_t, t)| \right|^2,$$
  
where  $X_t = tX_1 + (1 - t)X_0$ 

### **Empirical Results**

| CIFAR10        |         |        |         |  |
|----------------|---------|--------|---------|--|
| Method         | NFE (↓) | IS (↑) | FID (↓) |  |
| VP SDE         | 2000    | 9.58   | 2.55    |  |
| subVP SDE      | 2000    | 9.56   | 2.61    |  |
| VP ODE         | 140     | 9.37   | 3.93    |  |
| subVP ODE      | 146     | 9.46   | 3.16    |  |
| Rectified Flow | 127     | 9.60   | 2.58    |  |

#### Fast sampling + high-quality



(A) LSUN Church



C) LSUN Bedroom



(D) AFHQ Cat

**256 Resolution** 

#### Not There Yet

Randomly sample  $X_0 \sim \pi_0$ Generated distribution  $X_1 \sim \pi_1$ Guaranteed by theory **ODE is still curved!** Simulate with ODE solver, e.g., Euler  $\mathsf{ODE}: \frac{dX}{dt} = v_{\theta}(X, t)$ 

### **Prior Attempts**

Learning straight probability flow ODEs is investigated in the Neural ODE works

When continuous normalizing flows were hot

#### 1. Jacobian and Kinetic Regularization [Finlay et al. 2020]





$$\int_0^1 \left\| \nabla_{X_t} v_\theta(X_t, t) \right\|_F^2 \mathrm{d}t$$

Integral of Frobenius norm of Jacobian



#### 2. Optimal Transport-Flow [Onken et al. 2021] $\int_{-\infty}^{1}$ 12 $\log p_{\theta}(x_i)$

$$\overline{i=1}$$
  $J_0$   
Likelihood of Trans  
the training data

$$\int_{0} ||v_{\theta}(X_t, t)||^2 dt$$
  
Transport Cost

$$\int_0^1 \left\| \partial_t \Phi(X_t, t) - \frac{1}{2} \left\| \nabla_{X_t} \Phi(X_t, t) \right\| \right\|$$
  
s.t.  $v(X_t, t) = -\nabla_{X_t} \Phi(X_t, t)$ 

Hamilton–Jacobi–Bellman Regularization



**Limited Capacity** Hard to Optimize

Fail to Scale up

dt

#### Our Solution: Reflow!



### Our Solution: Reflow!

Curved student comes from crossing in training



We have no better coupling than random

### Our Solution: Reflow!

But the new student eliminates crossing!



It is a better teacher than random Moreover, it keeps the target distribution  $\pi_1$ 

#### Reflow Step-1: Construct Straight-Line Teachers



Get the coupling by simulating with ODE solver, e.g., Euler ODE:  $\frac{dX}{dt} = v_{\theta}(X, t)$ 

#### Reflow Step-1: Construct Straight-Line Teachers





Linear Interpolation (again):  $X_t = tX_1 + (1 - t)X_0$ ODE:  $\frac{dX}{dt} = v_{\theta}(X, t)$ 

#### Reflow Step-1: Construct Straight-Line Teachers





Linear Interpolation (again):  $X_t = tX_1 + (1 - t)X_0$ ODE:  $\frac{dX}{dt} = v_{\theta}(X, t)$ 

#### **Reflow Step-2: Project to Causal Students**

**Projection Loss (previous)** 

$$\min_{\theta} \int_0^1 \mathbf{E}_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left[ \left| \left| (X_1 - X_0) - v_{\theta}(X_t, t) \right| \right|^2 \right] \mathrm{d}t$$
  
Independent

#### **Projection Loss (now)**

$$\min_{\theta} \int_{0}^{1} \mathbb{E}_{X_{0} \sim \pi_{0}, X_{1} = ODE_{v_{old}}(X_{0})} \left[ \left| \left| (X_{1} - X_{0}) - v_{\theta}(X_{t}, t) \right| \right|^{2} \right] dt$$
  
Generated by ODE

#### Reflow Step-3: Generation with ODE solver



Randomly sample  $X_0 \sim \pi_0$ 



Generated distribution  $X_1 \sim \pi_1$ Guaranteed by math



Simulate with ODE solver, e.g., Euler

$$\mathsf{ODE}: \frac{dX}{dt} = v_{\theta}(X, t)$$

### Algorithm: Reflow

- **Given:**  $\{x_i^0\}_{i=1}^n \sim \pi_0, \{x_i^1\}_{i=1}^n \sim \pi_1, \text{ old flow } v_{old}$
- Training Iteration (Batch size = 1):
  - Step 1: Randomly sample  $X_0 \in \{x_i^0\}_{i=1}^n$
  - Step 2: Generate  $X_1 = ODE_{v_{old}}(X_0)$
  - Step 3: Randomly sample  $t \in [0,1]$
  - Step 4: Compute gradient with loss

$$L(\theta) \coloneqq ||X_1 - X_0 - v_{\theta}(X_t, t)||^2$$
,  
where  $X_t = tX_1 + (1 - t)X_0$ 

#### **Reflow: Theoretical Properties**



Guarantee straight ODE trajectories after infinite reflow

#### In practice, one reflow already has magic

k-Rectified Flow ( $v_k$ )

#### **Reflow: Theoretical Properties**

Reflow is a multi-objective OT solver

Every reflow monotonically decrease the transport cost for all convex cost functions *c*:

$$E_{(X_0,X_1) \sim p_{v_k}(X_0,X_1)}[c(X_1 - X_0)] \le E_{(X_0,X_1) \sim p_{v_{k+1}}(X_0,X_1)}[c(X_1 - X_0)]$$

#### Distillation

Distillation

$$\min_{\phi} \mathbb{E}_{X_0 \sim \pi_0, X_1 = ODE_{v}(X_0)} \left\| f_{\phi}(X_0) - X_1 \right\|^2$$

Data-free Distillation



#### Reflow is Orthogonal to Distillation

Reflow is a multi-objective OT solver

It changes coupling, while distillation imitates

**Reflow**: Create better probability flow teacher

**Distillation**: Train one-step student from teacher

#### **Rectified Flow**



### **Reflow: Empirical Results**

#### CIFAR10 **Method** NFE (↓) FID (↓) **IS (**1) **1-Rectified Flow** 127 9.60 2.58 9.24 3.36 2-Rectified Flow 110 **3-Rectified Flow** 9.01 3.96 104

| Method           | <b>NFE (↓)</b> | IS (↑) | <b>FID (</b> ↓) |
|------------------|----------------|--------|-----------------|
| 1-Rectified Flow | 1              | 1.13   | 378             |
| 2-Rectified Flow | 1              | 8.08   | 12.21           |
| 3-Rectified Flow | 1              | 8.47   | 8.15            |

| Method                   | NFE (↓) | IS (↑) | <b>FID (</b> ↓) |      |
|--------------------------|---------|--------|-----------------|------|
| 1-Rectified Flow+Distill | 1       | 9.08   | 6.18            | SOTA |
| 2-Rectified Flow+Distill | 1       | 9.01   | 4.85            | SUTA |
| 3-Rectified Flow+Distill | 1       | 8.79   | 5.21            |      |

#### **Reflow: Generative Modeling**



#### **Reflow: Domain Transfer**



#### InstaFlow: Scale Up Rectified Flow

- Today's common sense: scaling-up makes things different!
- Will the rectified flow pipeline (reflow+distill) still work in Stable Diffusion level?

#### InstaFlow: Scale Up Rectified Flow





One-step InstaFlow-1.7B (0.12s per image, 512 × 512)

One-step InstaFlow-0.9B (0.09s per image, 512 × 512)

#### InstaFlow: Scale Up Rectified Flow

Text-Conditioned Reflow:

Random text from text dataset Text-conditioned model  

$$v_{k+1} = \arg\min_{v} \mathbb{E}_{X_0 \sim \pi_0}, \overline{T \sim D_T} \left[ \int_0^1 || (X_1 - X_0) - v(X_t, t \mid T) ||^2 dt \right],$$
  
with  $X_1 = \text{ODE}[v_k](X_0 \mid T)$  and  $X_t = tX_1 + (1 - t)X_0,$   
Text-conditioned generation

- **Text Dataset**: 1.6M data points from LAION-2B (aesthetics score 6.0+)
- **Model**: Stable Diffusion (as 1-Rectified Flow)
- **Training cost**: 199 A100 GPU days (InstaFlow 0.9B)

#### **Reflow Makes a Difference**

- **Direct Distillation**: 100k training steps
- **Reflow + Distillation**: 50k training steps + 50k training steps

MS COCO 2017 – 5k images

| Method           | lnf t (↓) | <b>FID (</b> ↑) | CLIP (↑) |
|------------------|-----------|-----------------|----------|
| SD 1.4           | 0.88s     | 22.8            | 0.315    |
| 2-Rectified Flow | 0.88s     | 22.1            | 0.313    |

| Method                       | lnf t (↓) | <b>FID (</b> ↑) | CLIP (↑) |
|------------------------------|-----------|-----------------|----------|
| SD 1.4+Distill               | 0.09s     | 40.9            | 0.255    |
| Progressive Distill          | 0.09s     | 37.2            | 0.275    |
| 2-Rectified Flow<br>+Distill | 0.09s     | 31.0            | 0.285    |



### InstaFlow: Further Scaling Up

- The preliminary experiments only spends 24.65 A100 GPU days in training
- **Reflow + Distillation**: 24.65 A100 GPU days  $\rightarrow$  199 A100 GPU days



• Expand Network:  $0.9B \rightarrow 1.7B$ 



### InstaFlow: Empirical Results

#### MS COCO 2017 – 5k images

| Method                                            | Inf t (↓) | <b>FID (</b> ↑) | <b>CLIP (</b> ↑) |
|---------------------------------------------------|-----------|-----------------|------------------|
| SD 1.4+Distill                                    | 0.09s     | 40.9            | 0.255            |
| Progressive Distill (1-step)                      | 0.09s     | 37.2            | 0.275            |
| 2-Rectified Flow+Distill<br>(24.65 A100 GPU days) | 0.09s     | 31.0            | 0.285            |
| InstaFlow-0.9B<br>(199 A100 GPU days)             | 0.09s     | 23.4            | 0.304            |
| InstaFlow-1.7B                                    | 0.12s     | 22.4            | 0.309            |

#### MS COCO 2014 – 30k images

| Method           | Inf t (↓) | <b>FID (</b> ↑) |
|------------------|-----------|-----------------|
| Stable Diffusion | 2.9s      | 9.62            |
| StyleGAN-T       | 0.1s      | 13.90           |
| GigaGAN          | 0.13s     | 9.09            |
| InstaFlow-0.9B   | 0.09s     | 13.10           |
| InstaFlow-1.7B   | 0.12s     | 11.83           |

#### InstaFlow as Fast Previewer

One-Step



Fast preview + Slow Refiner

+SDXL Refiner

### Other Works from Our Group



#### FlowGrad

Fast gradient-based editing with probability flows [Liu et al., CVPR 2023]



#### **Point Straight Flow**

One-step point cloud generation ( $100 \times$  faster)

[Wu et al., CVPR 2023]

### **Applications From Other Labs**



VoiceFlow (text-to-speech) [Guo et al. 2023]



FlowSite (binding site design) [Stark et al. 2023]



#### RIVER (video prediction) [Davtyan et al. 2023]



FoldFlow (protein structure design) [Yim et al. 2023]

#### Take-Aways

- Straight = Fast !
- Made possible by Rectified Flow !
- Scale up perfectly in large models !



# Thank you!

Questions?



Many thanks to my collaborators: Chengyue Gong, Qiang Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng

#### **Concurrent works**

There were concurrent works with the same idea, different names:

- Flow matching [Lipman et al. 2023]
- Stochastic Interpolants [Albergo et al. 2023]
- $\alpha$ -(de)blending [Heitz et al. 2023]
- Action matching [Neklyudov et al. 2023]