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Text-to-Video generation: "a horse galloping on a street"
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Text-to-Video generation: "a panda is playing guitar on times square"

Videos

Texts & Codes Policies




AIGC Pipeline

N—------------------_’
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Training Inference

Real-World Data




Generative Models

Given: observed data points {x;}/=,

Unknown: the groundtruth data distribution p(x)

’--------

p(x)

Training Data




Generative Models

Given: observed data points {x;}I-,
Unknown: the groundtruth data distribution p(x)
Training: to learn a model to capture p(x)

Sampling: generate from the learned distribution

Generated Data

’--------

Learned




Generative Models

Given: observed data points {x;}-, Generated Data
Unknown: the groundtruth data distribution p(x)
Training: to learn a model to capture p(x)

Sampling: generate from the learned distribution

’--------

@ What do we expect for good
@ 1}) generative model frameworks?

Learned




Generative Models

Given: observed data points {x;}/=, Generated Data

Unknown: the groundtruth data distribution p(x)

——————————————————————————————————————————————————————

——————————————————————————————————————————————————————

Sampling: generate from the learned distribution

’--------

G

-
Efficient Many objectives are hard to
Training optimize / of high variance
Learne




Generative Models

Given: observed data points {x;}/=, Generated Data
Unknown: the groundtruth data distribution p(x)

Training: to learn a model to capture p(x)

———————————————————————————————————————————————————————————

-
Efficient Sampling from general
Sampling distributions is slow
-

[Liu et al., NeulPS 2021 spotlight]
[Zhang, Liu et al., ICML 2022]




Frameworks of Generative Models

[ Efficient Training ] [ Efficient Sampling J

Energy-Based Model

[Hinton 1999, 2002]

Autoregressive Model \/

[Frey 1998, Bengio & Bengio 2000]

GAN

[Goodfellow et al. 2014]

VAE

[Kingma & Welling 2014]

Normalizing Flow
[Rezende & Mohamed 2015]

< ||

[Sohl-Dickstein et al. 2015,
Ho et al. 2020, Song et al. 2021]

Diffusion Model \/
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Frameworks of Generative Models

[ Efficient Training ] [ Efficient Sampling J

Energy-Based Model

[Hinton 1999, 2002]

Autoregressive Model \/

[Frey 1998, Bengio & Bengio 2000]

GAN
[Goodfellow et al. 2014] ( Can we get bothf? 1
VAE \ J

[Kingma & Welling 2014]

Normalizing Flow
[Rezende & Mohamed 2015]

< ||

Diffusion Model
[Sohl-Dickstein et al. 2015, \/

Ho et al. 2020, Song et al. 2021]




Diffusion Models

Ry

Training
Data

Training

Generated
Data

Sampling




Why are they slow?

Generated
Data

2> Problem: Noise in the diffusion process Liuetal, ICLR2023 spotiight]

O Solution: Marginal-preserving ordinary differential equation (ODE)

DDIM [Song et al. 2021], Heun [Karras et al. 2022], DPM-Solver [Lu et al. 2022], etc.
=[f(X,t) — g%(t)Vxlog p,(X)]dt +|g(t)dWt| Noise
Reverse Stochastic Differential Equation (SDE)




Why are they slow?

Generated
Data

2> Problem: Noise in the diffusion process Liuetal, ICLR2023 spotiight]

O Solution: Marginal-preserving ordinary differential equation (ODE)

DDIM [Song et al. 2021], Heun [Karras et al. 2022], DPM-Solver [Lu et al. 2022], etc.

1
X=[fX,0) - 54 *(6)Vxlog p, (X)]dt
Probability Flow Ordlnary Differential Equation




Why are thev slow?

Stable Diffusion

i
- Generated
Data
o1
@(2> New Problem: Curved ODE trajectory
Velocity v(X, t)

1
dX=[f (X, ) — = g*(t)Vxlog p.(X)de
Probability Flow Or_dinary Differential Equation




Discretization of ODE

« In computer, we solve ODEs by Euler discretization
Xere = Xe + e v(X, t)
e: step size

Large €: Fast, inaccurate ; Small ¢: Accurate, slow

Curved Trajectory Straight Trajectory

One-step, Exact
/\Gap o |
'd

N=1e=1/N
N=5e=1/N

dX = v(X, t)dt
Probability Flow Ordinary Differential Equation




Research Question

How do we learn straight generative ODES?

Diffusion models connect two distribution with diffusion processes

@ Idea: Connect with straight lines!




Rectified Flow

Learn from straight-line teachers
Purely ODE-based; no more conversion from SDE to ODE
A unified framework for both generative modeling and transfer learning

Bridge the gap between one-step and continuous-time models Reflow

[Liu et al., ICLR2023 spotlight]




Rectified Flow: Problem of Interest

Given: observed data points from two distributions

0 1
{x 7i1=1"’ Ty, {X; }?=1"’ T

Goal: find a transport map T such that,

Zl = T(Zo) ~ Tl1 When ZO ~ To

Generative Models Domain Transfer




Step 1: Construct Straight-Line Teachers

Linear Interpolation: X; = tX; + (1 — t)X,
ODE % —_ Xl — XO
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Step 1: Construct Straight-Line Teachers

0
{x ?=1"’ T

Linear Interpolation: X; = tX; + (1 — t)X,
ODE: = = X; — X,




Step 1: Construct Straight-Line Teachers

Linear Interpolation: X; = tX; + (1 — t)X,
ODE: = = X; — X,




Step 2: Project to Causal Students

Teacher ODE (Non-causal)

d—X = X1 — Xo
dt
Student ODE (Causal)

NEURAL NETWORK

Projection Loss

6

1
0

Teacher Student
velocity velocity




Step 2: Project to Causal Students

Projection Loss

min
9

1
J E)(0"7'50;)(1"'7'51 ”
0

(X,

— Xo) —[ve (X, )| at

Teacher Student
velocity velocity




Step 3: Generation with ODE solver

Randomly sample X, ~ m, Generated distribution X; ~ m;

Guaranteed by math

Simulate with ODE solver, e.g., Euler

ODE: = = vy (X, t)




Step 3: Generation with ODE solver

Randomly sample X, ~ m, Generated distribution X; ~ m;

Guaranteed by math

Simulate with ODE solver, e.g., Euler

ODE: = = vy (X, t)




Algorithm: Rectified Flow

* Given: {x{}L;~ mo, {x;}[1~ ™

* Training Iteration (Batch size = 1):
- Step 1: Randomly sample X, € {x}*, and X; € {x]}-,
« Step 2: Randomly sample t € [0,1]
« Step 3: Compute gradient with loss

2
L(6) = [IX; — Xo —ve (X, DI,
where X, =tX;+ (1 -1t)X,




Empirical Results

CIFAR10
Method ~ NFE()  IS()  FD()
VP SDE 2000 9.58 2.55
subVP SDE 2000 9.56 2.61
VP ODE 140 9.37 3.93
subVP ODE 146 9.46 3.16
Rectified Flow 127 9.60 2.58

Fast sampllng + high-quality

(A) LSUN Church (B) CelebA HQ (C) LSUN Bedroom (D) AFHQ Cat
256 Resolution




Not There Yet

Randomly sample X, ~ m, Generated distribution X; ~ m;

Guaranteed by theory

ODE is still curved!

Simulate with ODE solver, e.g., Euler

ODE: = = vy (X, t)




Prior Attempts

Learning straight probability flow ODEs is investigated in the Neural ODE works
When continuous normalizing flows were hot
1. Jacobian and Kinetic Regularization gy eta. 2020

N

Z log pg (x;) ! 2 1 2 1

R [ ot 1 at [ [xewotee o] ac - | diveg)txe, o) de

- 0 0 0

Likelihood of Kinetic energy Integral of Frobenius norm Log-determinant
the training data of Jacobian of Jacobian
2. Optimal Transport-FIow e e,z )

1
i 1 2 j 000K, 1) — 5 [V @Cx, 0 ||
lo X; 0

L gpe( l) JO ||U9(Xt, t)|| dt S.t. U(Xt, t) — _VXtCD(Xt, t)

Likelihood of Transport Cost Hamilton—Jacobi—Bellman
the training data Regularization

@[ Hard to Optimize ][ Limited Capacity ][ Fail to Scale up ]
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Our Solution: Reflow!

Idea: Re-connect with straight lines!




Our Solution: Reflow!

Curved student comes from crossing in training

O
. @ Good coupling .
®@g T o
\\\\\\\\
\\\\\ @ Bad coupling
\\\\
\\\\
~
\\\\\\\
~
.. \\\\'
~
O o ®

We have no better coupling than random




Our Solution: Reflow!

But the new student eliminates crossing!
L ..

@ Good coupling only

® O
O
O o ®
It is a better teacher than random
Moreover, it keeps the target distribution m,




Reflow Step-1: Construct Straight-Line Teachers

Get the coupling by simulating with ODE solver, e.g., Euler
ODE: = = vy (X, t)




Reflow Step-1: Construct Straight-Line Teachers

---------------- O
"""
| ——— | A
Q@ o
Q-
@ ¢ ®

Linear Interpolation (again): X; = tX; + (1 — t)X,
ODE: = = vy (X, t)




Reflow Step-1: Construct Straight-Line Teachers

{x? =1~ T {xil}?=1"’ T
2-GMM 2-GMM

Linear Interpolation (again): X; = tX; + (1 — t)X,
ODE: = = vy (X, t)




Reflow Step-2: Project to Causal Students

Projection Loss (previous)

1
. 2
memfo E{x0~n0,xl~n1 ”|(X1 — Xo) — ve (X, t)|| ]dt

Independent

Projection Loss (now)

1
. 2
meln_](; E|X0~7ro,X1=01)Ev0m.[(xo) ”|(X1 — Xo) — vo(Xy, t)” ]dt

Generated by ODE




Reflow Step-3: Generation with ODE solver

Randomly sample X, ~ =, ODE is Straightened! Generated distribution X; ~ 7,
Guaranteed by math

8
% . ke

Simulate with ODE solver, e.g., Euler

ODE: = = vy (X, t)




Algorithm: Reflow

 Given: {x)},~ mg, {x;}1-,~ my, old flow v,
* Training Iteration (Batch size = 1):

+ Step 1: Randomly sample X, € {x{},_

*| Step 2: Generate X; = ODE,_, (Xo)

« Step 3: Randomly sample t € [0,1]
« Step 4: Compute gradient with loss

2
L) = [I1Xy — Xo —ve Xy, O)I|",
where X, =tX;+ (1 —-1t)X,




Reflow: Theoretical Properties

Guarantee straight ODE trajectories after infinite reflow

In practice, one reflow already has magic

k-Rectified Flow (v;,)




Reflow: Theoretical Properties

Reflow is a multi-objective OT solver

Every reflow monotonically decrease the transport cost
for all convex cost functions c:

E(XO,X1)~pvk(XO,X1)[C(X1 — Xo)l = E(XO,X1)~pvk+1(XO,X1)[C(Xl — Xo)]




Distillation

Distillation

m(gn EX0~T[0,X1:0DE17(XO) ”f(b (XO) - X1 ”2

Data-free Distillation

Consistency Distillation

[Song et al. 2023]

Progressive Distillation
[Salimans et al. 2022]

t=1

M

2374 = f(21;1)+

14

Zy/2 = f(Z;s/4§ n)<

14

Z1/4 = f(Z1/23.7])<

X

X:f(Z1/4§‘7I)<
4
#2=—=0 X

Distillation >
A 4

Distillation >
A 4

€

X

Distillation >

€

>x = f(z1;0)




Reflow is Orthogonal to Distillation

Reflow is a multi-objective OT solver

It changes coupling, while distillation imitates

-
Reflow: Create better probability flow teacher

\Distillation: Train one-step student from teacher




Rectified Flow

Rectified Flow

L2 loss
+

Supervised Learning

A4

|

Efficient J
Training

N

Reflow straightens the
flow iteratively

AV4

[

Efficient
Sampling

]

N




Reflow: Empirical Results

CIFAR10

1-Rectified Flow 9.60 2.58
2-Rectified Flow 110 9.24 3.36
3-Rectified Flow 104 9.01 3.96
1-Rectified Flow 1.13

2-Rectified Flow 1 8.08 12.21
3-Rectified Flow 1 8.47 8.15
1-Rectified Flow+Distill 9.08 6.18

SOTA

2-Rectified Flow+Distill 1 9.01 4.85

. - (when arXiv)
3-Rectified Flow+Distill 1 8.79 5.21




Reflow: Generative Modeling

Initialization

MO PANONY-|

MO PAYIIY-T




Reflow: Domain Transfer

MOLJ POUIOSY-]  MO[ POYTIONY-C




InstaFlow: Scale Up Rectified Flow

« Today’'s common sense: scaling-up makes things different!

« Will the rectified flow pipeline (reflow+distill) still work in Stable Diffusion level?

[Liu et al., in submission]




InstaFIow Scale Up Rectified Flow

One-step InstaFlow-1.7B
(0.12s per image, 512 x 512)

One-step InstaFlow-0.9B (0.09s per image, 512 x 512)




InstaFlow: Scale Up Rectified Flow

Text-Conditioned Reflow:
Random text from text dataset Text—C(T)nditioned model

1
ks = axgminEx, 23 | [ (30 = Xo) ~RR e[ TY I ]
0

v

with| X; = ODE[v;](Xo | 7)| and X; = tX; + (1 — t) X,

Text-conditioned generation
Text Dataset: 1.6M data points from LAION-2B (aesthetics score 6.0+)

Model: Stable Diffusion (as 1-Rectified Flow)

Training cost: 199 A100 GPU days (InstaFlow 0.9B)




Reflow Makes a Difference

* Direct Distillation: 100k training steps
* Reflow + Distillation: 50k training steps + 50k training steps

MS COCO 2017 — 5k images

SD 1.4 0.88s 22.8 0.315
2-Rectified Flow 0.88s 22.1 0.313

SD 1.4+Distill 0.09s 40.9 0.255
Progressive Distill 0.09s 37.2 0.275

2-Rectified Flow

+Distill 0.09s 31.0 0.285




Reflow Makes a Difference

Noise

Stable iﬂ"usion 2-Rectifi

ed Flow _
-w \.\ -

Stable Diffusion 2-Rectified Flow

N=25

Stable Diffusion (Curved Flow)

1

Pixel Value

N

+Distill

Reflowed (Straight Flow)




InstaFlow: Further Scaling Up

* The preliminary experiments only spends 24.65 A100 GPU days in training

* Reflow + Distillation: 24.65 A100 GPU days —» 199 A100 GPU days

/| InstaFlow-09B |

 Expand Network: 0.9B - 1.7B

/| InstaFlow-1.78 |




InstaFlow: Empirical Results

MS COCO 2017 — 5k images
SD 1.4+Distill 0.09s 40.9 0.255
Progressive Distill (1-step) 0.09s 37.2 0.275

2-Rectified Flow+Distill
(24.65 A100 GPU days)

InstaFlow-0.9B
(199 A100 GPU days)

InstaFlow-1.7B 0.12s 22.4 0.309
MS COCO 2014 — 30k images

0.09s 31.0 0.285

0.09s 23.4 0.304

Stable Diffusion 2.9s 9.62
StyleGAN-T 0.1s 13.90
GigaGAN 0.13s 9.09
InstaFlow-0.9B 0.09s 13.10

InstaFlow-1.7B 0.12s 11.83




InstaFlow as Fast Previewer

One-Step

+SDXL
Refiner

@[ Fast iew + Slw efiner }




Other Works from Our Group

Smiling Angry Male—Female Curly Hair PSF (ours) PVD-DDIM PVD

DiffCLIP

+ede

FlowGrad FlowGrad | StyleCLIP
+RF

= 1 20
g 0.04 0.68
FlowGrad Point Straight Flow
Fast gradient-based editing with probability flows One-step point cloud generation (100x faster)

[Liu et al., CVPR 2023] [Wu et al., CVPR 2023]




Applications From Other Labs

Mel-Spectrogram

@) ~ pi(x|y)

A

t=1

ODE
Timespan

t=0e

@) ~ po(@oly)
= N(z(.|0, I)

VoiceFlow (text-to-speech) [Guo et al. 2023]

LA

Ordinary Differential Equation
dx; = ve(w, | y)dt

AL

;' Conditional ";

f probability path |
b P(-‘t &y, Ty, U) [@

frenees ’5 ; > Vector Field
: Nt Estimator
Ly >

A
...... j\f |Duration Adsptor j«——

Gaussian Noise

T G (S

’ Text Encoder }—/‘

PRIHL NT IHO NG ...

source frame

RIVER (video prediction) [Davtyan et al. 2023]

target frame

FlowSite (blndlng site design) [Stark et al. 2023]

FoldFlow (protein structure design) [Yim et al. 2023]




Take-Aways

« Straight = Fast !
« Made possible by Rectified Flow !

« Scale up perfectly in large models !




TEXA

The University of Texas at Austin

Thank you!

Questions?

\

Demo: https://huggingface.co/spaces/XCLiu/InstaFlow

Many thanks to my collaborators: Chengyue Gong, Qiang Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng



Concurrent works

There were concurrent works with the same idea, different names:

* Flow matching [Lipman et al. 2023]

« Stochastic Interpolants [Albergo et al. 2023]
« a-(de)blending [Heitz et al. 2023]

« Action matching [Neklyudov et al. 2023]




